Existence and location results for fully nonlinear boundary value problem of th-order nonlinear system.
We employ the active set strategy which was proposed by Facchinei for solving large scale bound constrained optimization problems. As the special structure of the bound constrained problem, a simple rule is used for updating the multipliers. Numerical results show that the active set identification strategy is practical and efficient.
A non-interior point algorithm based on projection for second-order cone programming problems is proposed and analyzed. The main idea of the algorithm is that we cast the complementary equation in the primal-dual optimality conditions as a projection equation. By using this reformulation, we only need to solve a system of linear equations with the same coefficient matrix and compute two simple projections at each iteration, without performing any line search. This algorithm can start from an arbitrary...
A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the present strategy...
The smoothing-type algorithm is a powerful tool for solving the second-order cone programming (SOCP), which is in general designed based on a monotone line search. In this paper, we propose a smoothing-type algorithm for solving the SOCP with a non-monotone line search. By using the theory of Euclidean Jordan algebras, we prove that the proposed algorithm is globally and locally quadratically convergent under suitable assumptions. The preliminary numerical results are also reported which indicate...
Page 1