A weak Néron model with applications to -adic dynamical systems
Let be an algebraic family of Drinfeld modules defined over a field K of characteristic p, and let a,b ∈ K[λ]. Assume that neither a(λ) nor b(λ) is a torsion point for for all λ. If there exist infinitely many λ ∈ K̅ such that both a(λ) and b(λ) are torsion points for , then we show that for each λ ∈ K̅, a(λ) is torsion for if and only if b(λ) is torsion for . In the case a,b ∈ K, we prove in addition that a and b must be -linearly dependent.
Let be a morphism of a variety defined over a number field , let be a -subvariety, and let be the orbit of a point . We describe a local-global principle for the intersection . This principle may be viewed as a dynamical analog of the Brauer–Manin obstruction. We show that the rational points of are Brauer–Manin unobstructed for power maps on in two cases: (1) is a translate of a torus. (2) is a line and has a preperiodic coordinate. A key tool in the proofs is the classical...
Page 1