The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

On Ricci curvature of totally real submanifolds in a quaternion projective space

Ximin Liu — 2002

Archivum Mathematicum

Let M n be a Riemannian n -manifold. Denote by S ( p ) and Ric ¯ ( p ) the Ricci tensor and the maximum Ricci curvature on M n , respectively. In this paper we prove that every totally real submanifolds of a quaternion projective space Q P m ( c ) satisfies S ( ( n - 1 ) c + n 2 4 H 2 ) g , where H 2 and g are the square mean curvature function and metric tensor on M n , respectively. The equality holds identically if and only if either M n is totally geodesic submanifold or n = 2 and M n is totally umbilical submanifold. Also we show that if a Lagrangian submanifold of...

Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions

Yaning WangXimin Liu — 2014

Annales Polonici Mathematici

We consider an almost Kenmotsu manifold M 2 n + 1 with the characteristic vector field ξ belonging to the (k,μ)’-nullity distribution and h’ ≠ 0 and we prove that M 2 n + 1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, provided that M 2 n + 1 is ξ-Riemannian-semisymmetric. Moreover, if M 2 n + 1 is a ξ-Riemannian-semisymmetric almost Kenmotsu manifold such that ξ belongs to the (k,μ)-nullity distribution, we prove that M 2 n + 1 is...

f -biminimal maps between Riemannian manifolds

Yan ZhaoXimin Liu — 2019

Czechoslovak Mathematical Journal

We give the definition of f -biminimal submanifolds and derive the equation for f -biminimal submanifolds. As an application, we give some examples of f -biminimal manifolds. Finally, we consider f -minimal hypersurfaces in the product space n × 𝕊 1 ( a ) and derive two rigidity theorems.

Page 1

Download Results (CSV)