The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On approximation of functions by certain operators preserving x 2

Lucyna RempulskaKarolina Tomczak — 2008

Commentationes Mathematicae Universitatis Carolinae

In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving e k ( x ) = x k , k = 0 , 2 . Using a modification of certain operators L n preserving e 0 and e 1 , we introduce operators L n * which preserve e 0 and e 2 and next we define operators L n ; r * for r -times differentiable functions. We show that L n * and L n ; r * have better approximation properties than L n and L n ; r .

On modified Meyer-König and Zeller operators of functions of two variables

Lucyna RempulskaMariola Skorupka — 2006

Archivum Mathematicum

This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska,...

Page 1

Download Results (CSV)