The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

ludovic faubourgjean-baptiste pomet — 2010

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.

Page 1

Download Results (CSV)