The Jacobian Conjecture: survey of some results
The paper contains the formulation of the problem and an almost up-to-date survey of some results in the area.
The paper contains the formulation of the problem and an almost up-to-date survey of some results in the area.
It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form , where are homogeneous polynomials of degree 3 with real coefficients (or ), j = 1,...,n and H’(x) is a nilpotent matrix for each . We give another proof of Yu’s theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case , where . Note that the above inequality is not true when the coefficients of...
We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set (resp. ), then (f,g) is bijective.
Let 𝕂 denote ℝ or ℂ, n > 1. The Jacobian Conjecture can be formulated as follows: If F:𝕂ⁿ → 𝕂ⁿ is a polynomial map with a constant nonzero jacobian, then F is a polynomial automorphism. Although the Jacobian Conjecture is still unsolved even in the case n = 2, it is convenient to consider the so-called Generalized Jacobian Conjecture (for short (GJC)): the Jacobian Conjecture holds for every n>1. We present the reduction of (GJC) to the case of F of degree 3 and of symmetric homogeneous...
Let F be a polynomial mapping of ℝ², F(O) = 0. In 1987 Meisters and Olech proved that the solution y(·) = 0 of the autonomous system of differential equations ẏ = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere positive and the trace of the matrix of the differential of F is everywhere negative. In particular, the mapping F is then injective. We give an n-dimensional generalization of this result.
Page 1