Cycles évanescents et faisceaux pervers : cas des courbes planes irréductibles
Let be a commutative ring, a commutative -algebra and the filtered ring of -linear differential operators of . We prove that: (1) The graded ring admits a canonical embedding into the graded dual of the symmetric algebra of the module of differentials of over , which has a canonical divided power structure. (2) There is a canonical morphism from the divided power algebra of the module of -linear Hasse–Schmidt integrable derivations of to . (3) Morphisms and fit into a...
We consider categories of generalized perverse sheaves, with relaxed constructibility conditions, by means of the process of gluing t-structures and we exhibit explicit abelian categories defined in terms of standard sheaves categories which are equivalent to the former ones. In particular , we are able to realize perverse sheaves categories as non full abelian subcategories of the usual bounded complexes of sheaves categories. Our methods use induction on perversities. In this paper, we restrict...
In this paper, we give a new proof of the continuity of division by differential operators with analytic coefficients, originally proved by Mebkhout and the second author. Our methods come from the proof of the Constant Rank Theorem for analytic maps between power series spaces, given by Müller and the first author.
Soit une variété analytique complexe lisse et un diviseur libre. Les connexions logarithmiques intégrables par rapport à peuvent être étudiées comme des -modules localement libres munis d’une structure de module (à gauche) sur l’anneau des opérateurs différentiels logarithmiques . Dans cet article nous étudions deux résultats liés : la relation entre les duaux d’une connexion logarithmique intégrable sur les anneaux de base et , et un critère différentiel pour le théorème de comparaison...
Page 1