Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Hasse–Schmidt derivations, divided powers and differential smoothness

Luis Narváez Macarro — 2009

Annales de l’institut Fourier

Let k be a commutative ring, A a commutative k -algebra and D the filtered ring of k -linear differential operators of A . We prove that: (1) The graded ring gr D admits a canonical embedding θ into the graded dual of the symmetric algebra of the module Ω A / k of differentials of A over k , which has a canonical divided power structure. (2) There is a canonical morphism ϑ from the divided power algebra of the module of k -linear Hasse–Schmidt integrable derivations of A to gr D . (3) Morphisms θ and ϑ fit into a...

Explicit models for perserse sheaves.

Félix Gudiel RodríguezLuis Narváez Macarro — 2003

Revista Matemática Iberoamericana

We consider categories of generalized perverse sheaves, with relaxed constructibility conditions, by means of the process of gluing t-structures and we exhibit explicit abelian categories defined in terms of standard sheaves categories which are equivalent to the former ones. In particular , we are able to realize perverse sheaves categories as non full abelian subcategories of the usual bounded complexes of sheaves categories. Our methods use induction on perversities. In this paper, we restrict...

Continuous division of differential operators

Herwig HauserLuis Narváez-Macarro — 2001

Annales de l’institut Fourier

In this paper, we give a new proof of the continuity of division by differential operators with analytic coefficients, originally proved by Mebkhout and the second author. Our methods come from the proof of the Constant Rank Theorem for analytic maps between power series spaces, given by Müller and the first author.

Dualité et comparaison pour les complexes de de Rham logarithmiques par rapport aux diviseurs libres

Francisco Javier Calderón MorenoLuis Narváez Macarro — 2005

Annales de l’institut Fourier

Soit X une variété analytique complexe lisse et D X un diviseur libre. Les connexions logarithmiques intégrables par rapport à D peuvent être étudiées comme des 𝒪 X -modules localement libres munis d’une structure de module (à gauche) sur l’anneau 𝒟 X ( log D ) des opérateurs différentiels logarithmiques . Dans cet article nous étudions deux résultats liés : la relation entre les duaux d’une connexion logarithmique intégrable sur les anneaux de base 𝒟 X et 𝒟 X ( log D ) , et un critère différentiel pour le théorème de comparaison...

Page 1

Download Results (CSV)