The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential

Luisa MoschiniAlberto Tesei — 2005

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation t u = u + c x 2 u ( 0 < c < n - 2 2 4 ; n 3 ) . A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator H u = - u - c x 2 u with the opposite of the weighted Laplacian λ v = 1 x λ div x λ v when λ = 2 - n + 2 c 0 - c .

Page 1

Download Results (CSV)