The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider a convolution operator Tf = p.v. Ω ⁎ f with , where K(x) is an (n,β) kernel near the origin and an (α,β), α ≥ n, kernel away from the origin; h(x) is a real-valued function on . We give a criterion for such an operator to be bounded from the space into itself.
Download Results (CSV)