Orthogonality and closure operators
Order-enriched solid functors, as presented in this paper in two versions, enjoy many of the strong properties of their ordinary counterparts, including the transfer of the existence of weighted (co)limits from their codomains to their domains. The ordinary version of the notion first appeared in Trnková's work on automata theory of the 1970s and was subsequently studied by others under various names, before being put into a general enriched context by C. Anghel. Our focus in this paper is on differentiating...
Categories whose Yoneda embedding has a left adjoint are known as total categories and are characterized by a strong cocompleteness property. We introduce the notion of multitotal category by asking the Yoneda embedding to be right multiadjoint and prove that this property is equivalent to totality of the formal product completion of . We also characterize multitotal categories with various types of generators; in particular, the existence of dense generators is inherited by the formal product...
A logic of orthogonality characterizes all “orthogonality consequences" of a given class of morphisms, i.e. those morphisms such that every object orthogonal to is also orthogonal to . A simple four-rule deduction system is formulated which is sound in every cocomplete category. In locally presentable categories we prove that the deduction system is also complete (a) for all classes of morphisms such that all members except a set are regular epimorphisms and (b) for all classes , without...
Page 1