The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Arithmetical aspects of certain functional equations

Lutz G. Lucht — 1997

Acta Arithmetica

The classical system of functional equations       1 / n ν = 0 n - 1 F ( ( x + ν ) / n ) = n - s F ( x ) (n ∈ ℕ) with s ∈ ℂ, investigated for instance by Artin (1931), Yoder (1975), Kubert (1979), and Milnor (1983), is extended to       1 / n ν = 0 n - 1 F ( ( x + ν ) / n ) = d = 1 λ n ( d ) F ( d x ) (n ∈ ℕ) with complex valued sequences λ n . This leads to new results on the periodic integrable and the aperiodic continuous solutions F:ℝ₊ → ℂ interrelating the theory of functional equations and the theory of arithmetic functions.

Banach algebra techniques in the theory of arithmetic functions

Lutz G. Lucht — 2008

Acta Mathematica Universitatis Ostraviensis

For infinite discrete additive semigroups X [ 0 , ) we study normed algebras of arithmetic functions g : X endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for X = log . This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.

General Dirichlet series, arithmetic convolution equations and Laplace transforms

Helge GlöcknerLutz G. LuchtŠtefan Porubský — 2009

Studia Mathematica

In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied solutions g: ℕ → ℂ to convolution equations of the form a d g d + a d - 1 g ( d - 1 ) + + a g + a = 0 , where a , . . . , a d : are given arithmetic functions associated with Dirichlet series which converge on some right half plane, and also g is required to be such a function. In this article, we extend our previous results to multidimensional general Dirichlet series of the form x X f ( x ) e - s x ( s k ), where X [ 0 , ) k is an additive subsemigroup. If X is discrete and a certain solvability criterion is satisfied,...

Average order in cyclic groups

Joachim von zur GathenArnold KnopfmacherFlorian LucaLutz G. LuchtIgor E. Shparlinski — 2004

Journal de Théorie des Nombres de Bordeaux

For each natural number n we determine the average order α ( n ) of the elements in a cyclic group of order n . We show that more than half of the contribution to α ( n ) comes from the ϕ ( n ) primitive elements of order n . It is therefore of interest to study also the function β ( n ) = α ( n ) / ϕ ( n ) . We determine the mean behavior of α , β , 1 / β , and also consider these functions in the multiplicative groups of finite fields.

Page 1

Download Results (CSV)