Banach algebra techniques in the theory of arithmetic functions
Acta Mathematica Universitatis Ostraviensis (2008)
- Volume: 16, Issue: 1, page 45-56
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topLucht, Lutz G.. "Banach algebra techniques in the theory of arithmetic functions." Acta Mathematica Universitatis Ostraviensis 16.1 (2008): 45-56. <http://eudml.org/doc/35175>.
@article{Lucht2008,
abstract = {For infinite discrete additive semigroups $X\subset [0,\infty )$ we study normed algebras of arithmetic functions $g\colon X\rightarrow \mathbb \{C\}$ endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for $X=\log \{\mathbb \{N\}\}$. This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.},
author = {Lucht, Lutz G.},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Banach algebras; arithmetic functions; weighted norms; inversion; general Dirichlet series; Euler products; arithmetic functions; weighted norms; Banach algebras},
language = {eng},
number = {1},
pages = {45-56},
publisher = {University of Ostrava},
title = {Banach algebra techniques in the theory of arithmetic functions},
url = {http://eudml.org/doc/35175},
volume = {16},
year = {2008},
}
TY - JOUR
AU - Lucht, Lutz G.
TI - Banach algebra techniques in the theory of arithmetic functions
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2008
PB - University of Ostrava
VL - 16
IS - 1
SP - 45
EP - 56
AB - For infinite discrete additive semigroups $X\subset [0,\infty )$ we study normed algebras of arithmetic functions $g\colon X\rightarrow \mathbb {C}$ endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for $X=\log {\mathbb {N}}$. This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.
LA - eng
KW - Banach algebras; arithmetic functions; weighted norms; inversion; general Dirichlet series; Euler products; arithmetic functions; weighted norms; Banach algebras
UR - http://eudml.org/doc/35175
ER -
References
top- Delange H., Sur les fonctions arithmétiques multiplicatives, . Ann. Scient. École Norm. Sup., série, 78 (1961), 273–304. (1961) Zbl0234.10043MR0169829
- Edwards D.A., 10.1090/S0002-9939-1957-0096086-1, . Proc. Amer. Math. Soc. 8 (1957), 1067–1074. (1957) MR0096086DOI10.1090/S0002-9939-1957-0096086-1
- Elliott P.D.T.A., 10.1112/plms/s3-31.4.418, . Proc. London Math. Soc. 31 (1975), 418–438. (1975) Zbl0319.10055MR0387220DOI10.1112/plms/s3-31.4.418
- Gelfand I. M., Über absolut konvergente trigonometrische Reihen und Integrale, . Rec. Math. (Mat. Sbornik) N. S. vol. 9 (1941), 51–66. (1941) Zbl0024.32302MR0004727
- Halász G., 10.1007/BF01894515, . Acta Math. Sci. Hung. 19 (1968), 365–403. (1968) MR0230694DOI10.1007/BF01894515
- Heppner E., W. Schwarz, Benachbarte multiplikative Funktionen, . Studies in Pure Mathematics (To the Memory of Paul Turán). Budapest 1983, 323–336. (1983) Zbl0518.10050MR0820232
- Hewitt E., J.H. Williamson, 10.1090/S0002-9939-1957-0090680-X, . Proc. Amer. Math. Soc. 8 (1957), 863–868. (1957) Zbl0081.06804MR0090680DOI10.1090/S0002-9939-1957-0090680-X
- Indlekofer K.-H., 10.1007/BF01215089, . Math. Z. 172 (1980), 255–271. (1980) Zbl0416.10035MR0581443DOI10.1007/BF01215089
- Lucht L.G., 10.1007/BF01226017, . Arch. Math. 30, 40–48 (1978). (1978) Zbl0374.10029MR0480396DOI10.1007/BF01226017
- Lucht L.G., 10.1007/BF02572405, . Math. Z. 214 (1993), 287–295. (1993) Zbl0805.11067MR1240890DOI10.1007/BF02572405
- Lucht L.G., Weighted relationship theorems and Ramanujan expansions, . Acta Arith. 70 (1995), 25–42. (1995) Zbl0818.11005MR1318760
- Lucht L.G., K. Reifenrath, Weighted Wiener-Lévy theorems, . Analytic Number Theory. Proceedings of a Conference in Honor of Heini Halberstam, Urbana-Champaign, 1995. Vol. 2, Birkhäuser, Boston 1996, 607–619. (1995) MR1409381
- Knopfmacher J., Abstract Analytic Number Theory, . 2nd ed., Dover Publ., New York 1975. (1975) Zbl0322.10001MR0419383
- Ramanujan S., On certain trigonometrical sums and their applications in the theory of numbers, . Transact. Cambridge Philos. Soc. 22 (1918), 259–276. (1918)
- Rudin W., Real and Complex Analysis, . McGraw-Hill, London 1970. (1970)
- Schwarz W., Eine weitere Bemerkung über multiplikative Funktionen, . Coll. Math. 28 (1973), 81–89. (1973) Zbl0249.10039MR0327695
- Spilker J., W. Schwarz, 10.1007/BF01238499, . Arch. Math. 32, 267–275 (1979). (1979) Zbl0394.42004MR0541625DOI10.1007/BF01238499
- Schwarz W., J. Spilker, Arithmetical Functions, . Cambridge University Press, Cambridge, 1994. (1994) Zbl0807.11001MR1274248
- Wiener N., 10.2307/1968102, . Annals of Math. 33 (1932), 1–100. (1932) Zbl0005.25003MR1503035DOI10.2307/1968102
- Wirsing E., 10.1007/BF01351892, . Math. Ann. 143 (1961), 75–102. (1961) Zbl0104.04201MR0131389DOI10.1007/BF01351892
- Wirsing E., 10.1007/BF02280301, . Acta Math. Acad. Hung. 18 (1967), 411–467. (1967) Zbl0165.05901MR0223318DOI10.1007/BF02280301
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.