Banach algebra techniques in the theory of arithmetic functions

Lutz G. Lucht

Acta Mathematica Universitatis Ostraviensis (2008)

  • Volume: 16, Issue: 1, page 45-56
  • ISSN: 1804-1388

Abstract

top
For infinite discrete additive semigroups X [ 0 , ) we study normed algebras of arithmetic functions g : X endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for X = log . This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.

How to cite

top

Lucht, Lutz G.. "Banach algebra techniques in the theory of arithmetic functions." Acta Mathematica Universitatis Ostraviensis 16.1 (2008): 45-56. <http://eudml.org/doc/35175>.

@article{Lucht2008,
abstract = {For infinite discrete additive semigroups $X\subset [0,\infty )$ we study normed algebras of arithmetic functions $g\colon X\rightarrow \mathbb \{C\}$ endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for $X=\log \{\mathbb \{N\}\}$. This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.},
author = {Lucht, Lutz G.},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Banach algebras; arithmetic functions; weighted norms; inversion; general Dirichlet series; Euler products; arithmetic functions; weighted norms; Banach algebras},
language = {eng},
number = {1},
pages = {45-56},
publisher = {University of Ostrava},
title = {Banach algebra techniques in the theory of arithmetic functions},
url = {http://eudml.org/doc/35175},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Lucht, Lutz G.
TI - Banach algebra techniques in the theory of arithmetic functions
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2008
PB - University of Ostrava
VL - 16
IS - 1
SP - 45
EP - 56
AB - For infinite discrete additive semigroups $X\subset [0,\infty )$ we study normed algebras of arithmetic functions $g\colon X\rightarrow \mathbb {C}$ endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for $X=\log {\mathbb {N}}$. This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.
LA - eng
KW - Banach algebras; arithmetic functions; weighted norms; inversion; general Dirichlet series; Euler products; arithmetic functions; weighted norms; Banach algebras
UR - http://eudml.org/doc/35175
ER -

References

top
  1. Delange H., Sur les fonctions arithmétiques multiplicatives, . Ann. Scient. École Norm. Sup., série, 78 (1961), 273–304. (1961) Zbl0234.10043MR0169829
  2. Edwards D.A., 10.1090/S0002-9939-1957-0096086-1, . Proc. Amer. Math. Soc. 8 (1957), 1067–1074. (1957) MR0096086DOI10.1090/S0002-9939-1957-0096086-1
  3. Elliott P.D.T.A., 10.1112/plms/s3-31.4.418, . Proc. London Math. Soc. 31 (1975), 418–438. (1975) Zbl0319.10055MR0387220DOI10.1112/plms/s3-31.4.418
  4. Gelfand I. M., Über absolut konvergente trigonometrische Reihen und Integrale, . Rec. Math. (Mat. Sbornik) N. S. vol. 9 (1941), 51–66. (1941) Zbl0024.32302MR0004727
  5. Halász G., 10.1007/BF01894515, . Acta Math. Sci. Hung. 19 (1968), 365–403. (1968) MR0230694DOI10.1007/BF01894515
  6. Heppner E., W. Schwarz, Benachbarte multiplikative Funktionen, . Studies in Pure Mathematics (To the Memory of Paul Turán). Budapest 1983, 323–336. (1983) Zbl0518.10050MR0820232
  7. Hewitt E., J.H. Williamson, 10.1090/S0002-9939-1957-0090680-X, . Proc. Amer. Math. Soc. 8 (1957), 863–868. (1957) Zbl0081.06804MR0090680DOI10.1090/S0002-9939-1957-0090680-X
  8. Indlekofer K.-H., 10.1007/BF01215089, . Math. Z. 172 (1980), 255–271. (1980) Zbl0416.10035MR0581443DOI10.1007/BF01215089
  9. Lucht L.G., 10.1007/BF01226017, . Arch. Math. 30, 40–48 (1978). (1978) Zbl0374.10029MR0480396DOI10.1007/BF01226017
  10. Lucht L.G., 10.1007/BF02572405, . Math. Z. 214 (1993), 287–295. (1993) Zbl0805.11067MR1240890DOI10.1007/BF02572405
  11. Lucht L.G., Weighted relationship theorems and Ramanujan expansions, . Acta Arith. 70 (1995), 25–42. (1995) Zbl0818.11005MR1318760
  12. Lucht L.G., K. Reifenrath, Weighted Wiener-Lévy theorems, . Analytic Number Theory. Proceedings of a Conference in Honor of Heini Halberstam, Urbana-Champaign, 1995. Vol. 2, Birkhäuser, Boston 1996, 607–619. (1995) MR1409381
  13. Knopfmacher J., Abstract Analytic Number Theory, . 2nd ed., Dover Publ., New York 1975. (1975) Zbl0322.10001MR0419383
  14. Ramanujan S., On certain trigonometrical sums and their applications in the theory of numbers, . Transact. Cambridge Philos. Soc. 22 (1918), 259–276. (1918) 
  15. Rudin W., Real and Complex Analysis, . McGraw-Hill, London 1970. (1970) 
  16. Schwarz W., Eine weitere Bemerkung über multiplikative Funktionen, . Coll. Math. 28 (1973), 81–89. (1973) Zbl0249.10039MR0327695
  17. Spilker J., W. Schwarz, 10.1007/BF01238499, . Arch. Math. 32, 267–275 (1979). (1979) Zbl0394.42004MR0541625DOI10.1007/BF01238499
  18. Schwarz W., J. Spilker, Arithmetical Functions, . Cambridge University Press, Cambridge, 1994. (1994) Zbl0807.11001MR1274248
  19. Wiener N., 10.2307/1968102, . Annals of Math. 33 (1932), 1–100. (1932) Zbl0005.25003MR1503035DOI10.2307/1968102
  20. Wirsing E., 10.1007/BF01351892, . Math. Ann. 143 (1961), 75–102. (1961) Zbl0104.04201MR0131389DOI10.1007/BF01351892
  21. Wirsing E., 10.1007/BF02280301, . Acta Math. Acad. Hung. 18 (1967), 411–467. (1967) Zbl0165.05901MR0223318DOI10.1007/BF02280301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.