Perturbation Classes of Semi-Fredholm Operators.
We extend the classical theory of the continuous and discrete wavelet transform to functions with values in UMD spaces. As a by-product we obtain equivalent norms on Bochner spaces in terms of g-functions.
We consider generalized square function norms of holomorphic functions with values in a Banach space. One of the main results is a characterization of embeddings of the form , in terms of the type p and cotype q of the Banach space X. As an application we prove -estimates for vector-valued Littlewood-Paley-Stein g-functions and derive an embedding result for real and complex interpolation spaces under type and cotype conditions.
In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.
We characterise the boundedness of the calculus of a sectorial operator in terms of dilation theorems. We show e. g. that if generates a bounded analytic semigroup on a UMD space, then the calculus of is bounded if and only if has a dilation to a bounded group on . This generalises a Hilbert space result of C.LeMerdy. If is an space we can choose another space in place of .
Page 1