The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 28

Showing per page

Order by Relevance | Title | Year of publication

On the maximal Fejér operator for double Fourier series of functions in Hardy spaces

Ferenc Móricz — 1995

Studia Mathematica

We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces H ( 1 , 0 ) ( 2 ) , H ( 0 , 1 ) ( 2 ) , or H ( 1 , 1 ) ( 2 ) . We prove that the maximal Fejér operator is bounded from H ( 1 , 0 ) ( 2 ) or H ( 0 , 1 ) ( 2 ) into weak- L 1 ( 2 ) , and also bounded from H ( 1 , 1 ) ( 2 ) into L 1 ( 2 ) . These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces L 1 l o g + L ( 2 ) , L 1 ( l o g + L ) 2 ( 2 ) , and L μ ( 2 ) with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures....

Tauberian theorems for Cesàro summable double sequences

Ferenc Móricz — 1994

Studia Mathematica

( s j k : j , k = 0 , 1 , . . . ) be a double sequence of real numbers which is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under which ( s j k ) converges in Pringsheim’s sense. These conditions are satisfied if ( s j k ) is slowly decreasing in certain senses defined in this paper. Among other things we deduce the following Tauberian theorem of Landau and Hardy type: If ( s j k ) is summable (C,1,1) to a finite limit and there exist constants n 1 > 0 and H such that j k ( s j k - s j - 1 , k - s j - 1 , k + s j - 1 , k - 1 ) - H , j ( s j k - s j - 1 , k ) - H and k ( s j k - s j , k - 1 ) - H whenever j , k > n 1 , then ( s j k ) converges....

On the uniform convergence and L¹-convergence of double Walsh-Fourier series

Ferenc Móricz — 1992

Studia Mathematica

In 1970 C. W. Onneweer formulated a sufficient condition for a periodic W-continuous function to have a Walsh-Fourier series which converges uniformly to the function. In this paper we extend his results from single to double Walsh-Fourier series in a more general setting. We study the convergence of rectangular partial sums in L p -norm for some 1 ≤ p ≤ ∞ over the unit square [0,1) × [0,1). In case p = ∞, by L p we mean C W , the collection of uniformly W-continuous functions f(x, y), endowed with the...

Tauberian theorems for Cesàro summable double integrals over + 2

Ferenc Móricz — 2000

Studia Mathematica

Given ⨍ ∈ L l 1 o c ( + 2 ) , denote by s(w,z) its integral over the rectangle [0,w]× [0,z] and by σ(u,v) its (C,1,1) mean, that is, the average value of s(w,z) over [0,u] × [0,v], where u,v,w,z>0. Our permanent assumption is that (*) σ(u,v) → A as u,v → ∞, where A is a finite number. First, we consider real-valued functions ⨍ and give one-sided Tauberian conditions which are necessary and sufficient in order that the convergence (**) s(u,v) → A as u,v → ∞ follow from (*). Corollaries allow these Tauberian conditions...

Regular statistical convergence of double sequences

Ferenc Móricz — 2005

Colloquium Mathematicae

The concepts of statistical convergence of single and double sequences of complex numbers were introduced in [1] and [7], respectively. In this paper, we introduce the concept indicated in the title. A double sequence x j k : ( j , k ) ² is said to be regularly statistically convergent if (i) the double sequence x j k is statistically convergent to some ξ ∈ ℂ, (ii) the single sequence x j k : k is statistically convergent to some ξ j for each fixed j ∈ ℕ ∖ ₁, (iii) the single sequence x j k : j is statistically convergent to some η k for...

Statistical extensions of some classical Tauberian theorems in nondiscrete setting

Ferenc Móricz — 2007

Colloquium Mathematicae

Schmidt’s classical Tauberian theorem says that if a sequence ( s k : k = 0 , 1 , . . . ) of real numbers is summable (C,1) to a finite limit and slowly decreasing, then it converges to the same limit. In this paper, we prove a nondiscrete version of Schmidt’s theorem in the setting of statistical summability (C,1) of real-valued functions that are slowly decreasing on ℝ ₊. We prove another Tauberian theorem in the case of complex-valued functions that are slowly oscillating on ℝ ₊. In the proofs we make use of two nondiscrete...

Multiple conjugate functions and multiplicative Lipschitz classes

Ferenc Móricz — 2009

Colloquium Mathematicae

We extend the classical theorems of I. I. Privalov and A. Zygmund from single to multiple conjugate functions in terms of the multiplicative modulus of continuity. A remarkable corollary is that if a function f belongs to the multiplicative Lipschitz class L i p ( α , . . . , α N ) for some 0 < α , . . . , α N < 1 and its marginal functions satisfy f ( · , x , . . . , x N ) L i p β , . . . , f ( x , . . . , x N - 1 , · ) L i p β N for some 0 < β , . . . , β N < 1 uniformly in the indicated variables x l , 1 ≤ l ≤ N, then f ̃ ( η , . . . , η N ) L i p ( α , . . . , α N ) for each choice of ( η , . . . , η N ) with η l = 0 or 1 for 1 ≤ l ≤ N.

Ordinary convergence follows from statistical summability (C,1) in the case of slowly decreasing or oscillating sequences

Ferenc Móricz — 2004

Colloquium Mathematicae

Schmidt’s Tauberian theorem says that if a sequence (xk) of real numbers is slowly decreasing and l i m n ( 1 / n ) k = 1 n x k = L , then l i m k x k = L . The notion of slow decrease includes Hardy’s two-sided as well as Landau’s one-sided Tauberian conditions as special cases. We show that ordinary summability (C,1) can be replaced by the weaker assumption of statistical summability (C,1) in Schmidt’s theorem. Two recent theorems of Fridy and Khan are also corollaries of our Theorems 1 and 2. In the Appendix, we present a new proof of Vijayaraghavan’s...

The harmonic Cesáro and Copson operators on the spaces L p ( ) , 1 ≤ p ≤ 2

Ferenc Móricz — 2002

Studia Mathematica

The harmonic Cesàro operator is defined for a function f in L p ( ) for some 1 ≤ p < ∞ by setting ( f ) ( x ) : = x ( f ( u ) / u ) d u for x > 0 and ( f ) ( x ) : = - - x ( f ( u ) / u ) d u for x < 0; the harmonic Copson operator ℂ* is defined for a function f in L ¹ l o c ( ) by setting * ( f ) ( x ) : = ( 1 / x ) x f ( u ) d u for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense. We present rigorous proofs of the following two commuting relations: (i) If f L p ( ) for some 1 ≤ p ≤ 2, then ( ( f ) ) ( t ) = * ( f ̂ ) ( t ) a.e., where f̂ denotes the Fourier transform of f. (ii) If f L p ( ) for some 1 < p ≤ 2, then ( * ( f ) ) ( t ) = ( f ̂ ) ( t ) a.e. As...

Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition

Ferenc Móricz — 2010

Studia Mathematica

We consider complex-valued functions f ∈ L¹(ℝ), and prove sufficient conditions in terms of f to ensure that the Fourier transform f̂ belongs to one of the Lipschitz classes Lip(α) and lip(α) for some 0 < α ≤ 1, or to one of the Zygmund classes zyg(α) and zyg(α) for some 0 < α ≤ 2. These sufficient conditions are best possible in the sense that they are also necessary in the case of real-valued functions f for which either xf(x) ≥ 0 or f(x) ≥ 0 almost everywhere.

Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences

Ferenc Móricz — 2013

Studia Mathematica

Let s: [1,∞) → ℂ be a locally Lebesgue integrable function. We say that s is summable (L,1) if there exists some A ∈ ℂ such that l i m t τ ( t ) = A , where τ ( t ) : = 1 / ( l o g t ) 1 t s ( u ) / u d u . (*) It is clear that if the ordinary limit s(t) → A exists, then also τ(t) → A as t → ∞. We present sufficient conditions, which are also necessary, in order that the converse implication hold true. As corollaries, we obtain so-called Tauberian theorems which are analogous to those known in the case of summability (C,1). For example, if the function s is slowly...

Page 1 Next

Download Results (CSV)