Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.
We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.
A relationship between jacobian maps and the commutativity properties of suitable couples of hamiltonian vector fields is studied. A theorem by Meisters and Olech is extended to the nonpolynomial case. A property implying the Jacobian Conjecture in ℝ² is described.
A convexity theorem for the period function T of Hamiltonian systems with separable variables is proved. We are interested in systems with non-monotone T. This result is applied to proving the uniqueness of critical orbits for second order ODE's.
We give a shorter proof to a recent result by Neuberger [Rocky Mountain J. Math. 36 (2006)], in the real case. Our result is essentially an application of the global asymptotic stability Jacobian Conjecture. We also extend some of the results of Neuberger's paper.
Page 1