The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

Singular values, Ramanujan modular equations, and Landen transformations

M. Vuorinen — 1996

Studia Mathematica

A new connection between geometric function theory and number theory is derived from Ramanujan’s work on modular equations. This connection involves the function φ K ( r ) recurrent in the theory of plane quasiconformal maps. Ramanujan’s modular identities yield numerous new functional identities for φ 1 / p ( r ) for various primes p.

Region of variability for spiral-like functions with respect to a boundary point

S. PonnusamyA. VasudevaraoM. Vuorinen — 2009

Colloquium Mathematicae

For μ ∈ ℂ such that Re μ > 0 let μ denote the class of all non-vanishing analytic functions f in the unit disk with f(0) = 1 and R e ( 2 π / μ z f ' ( z ) / f ( z ) + ( 1 + z ) / ( 1 - z ) ) > 0 in . For any fixed z₀ in the unit disk, a ∈ ℂ with |a| ≤ 1 and λ ∈ ̅, we shall determine the region of variability V(z₀,λ) for log f(z₀) when f ranges over the class μ ( λ ) = f μ : f ' ( 0 ) = ( μ / π ) ( λ - 1 ) a n d f ' ' ( 0 ) = ( μ / π ) ( a ( 1 - | λ | ² ) + ( μ / π ) ( λ - 1 ) ² - ( 1 - λ ² ) ) . In the final section we graphically illustrate the region of variability for several sets of parameters.

Page 1

Download Results (CSV)