Compactly supported distributions and unitary representations. (Distributions à support compact et représentations unitaires.)
We define the wave front set of a distribution vector of a unitary representation in terms of pseudo-differential-like operators [M2] for any real Lie group G. This refines the notion of wave front set of a representation introduced by R. Howe [Hw]. We give as an application a necessary condition so that a distribution vector remains a distribution vector for the restriction of the representation to a closed subgroup H, and we give a propagation of singularities theorem for distribution vectors.
On a flat manifold , M. Kontsevich’s formality quasi-isomorphism is compatible with cup-products on tangent cohomology spaces, in the sense that for any formal Poisson -tensor the derivative at of the quasi-isomorphism induces an isomorphism of graded commutative algebras from Poisson cohomology space to Hochschild cohomology space relative to the deformed multiplication built from via the quasi-isomorphism. We give here a detailed proof of this result, with signs and orientations precised....
Page 1