The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

Jordan tori and polynomial endomorphisms in 2

Manfred DenkerStefan Heinemann — 1998

Fundamenta Mathematicae

For a class of quadratic polynomial endomorphisms f : 2 2 close to the standard torus map ( x , y ) ( x 2 , y 2 ) , we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).

Markov partitions for fibre expanding systems

Manfred DenkerHajo Holzmann — 2008

Colloquium Mathematicae

Fibre expanding systems have been introduced by Denker and Gordin. Here we show the existence of a finite partition for such systems which is fibrewise a Markov partition. Such partitions have direct applications to the Abramov-Rokhlin formula for relative entropy and certain polynomial endomorphisms of ℂ².

Dirichlet forms on quotients of shift spaces

Manfred DenkerAtsushi ImaiSusanne Koch — 2007

Colloquium Mathematicae

We define thin equivalence relations ∼ on shift spaces and derive Dirichlet forms on the quotient space Σ = / in terms of the nearest neighbour averaging operator. We identify the associated Laplace operator. The conditions are applied to some non-self-similar extensions of the Sierpiński gasket.

Page 1

Download Results (CSV)