On order and geodesic alignment of a connected bigraph
The well known types of routes in graphs and directed graphs, such as walks, trails, paths, and induced paths, are characterized using axioms on vertex sequences. Thus non-graphic characterizations of the various types of routes are obtained.
The periphery graph of a median graph is the intersection graph of its peripheral subgraphs. We show that every graph without a universal vertex can be realized as the periphery graph of a median graph. We characterize those median graphs whose periphery graph is the join of two graphs and show that they are precisely Cartesian products of median graphs. Path-like median graphs are introduced as the graphs whose periphery graph has independence number 2, and it is proved that there are path-like...
n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.
In this note we extend the Mulder-Nebeský characterization of the interval function of a connected graph to the disconnected case. One axiom needs to be adapted, but also a new axiom is needed in addition.
A transit function on a set is a function satisfying the axioms , and , for all . The all-paths transit function of a connected graph is characterized by transit axioms.
Page 1