The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we give a short, elementary proof of a known result in tropical mathematics, by which the convexity of the column span of a zero-diagonal real matrix is characterized by being a Kleene star. We give applications to alcoved polytopes, using normal idempotent matrices (which form a subclass of Kleene stars). For a normal matrix we define a norm and show that this is the radius of a hyperplane section of its tropical span.
Let and be points in . Write if is a multiple of . Two different points and in uniquely determine a tropical line passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on leaves. It is also a metric graph. If some representatives and of and are the first and second columns of some real normal idempotent order matrix , we prove that the tree is described by a matrix , easily obtained from . We also prove that...
Through tropical normal idempotent matrices, we introduce isocanted alcoved polytopes, computing their -vectors and checking the validity of the following five conjectures: Bárány, unimodality, , flag and cubical lower bound (CLBC). Isocanted alcoved polytopes are centrally symmetric, almost simple cubical polytopes. They are zonotopes. We show that, for each dimension, there is a unique combinatorial type. In dimension , an isocanted alcoved polytope has vertices, its face lattice is the lattice...
Download Results (CSV)