[unknown]
Étant donnés et un arbre dont chaque sommet est de valence au moins , on étudie la constante de Sobolev d’exposant de , c’est-à-dire la plus petite constante telle que pour tout on ait . Notre motivation vient de la recherche de graphes finis avec des petites constantes de Poincaré d’exposant , en vue d’obtenir des exemples de groupes qui ont la propriété de point fixe sur les espaces .
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de . On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au bord, à travers un invariant numérique :...
Page 1