The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Sur les entiers inférieurs à x ayant plus de log ( x ) diviseurs

Marc DelégliseJean-Louis Nicolas — 1994

Journal de théorie des nombres de Bordeaux

Let τ ( n ) be the number of divisors of n ; let us define S λ ( x ) = C a r d n x ; τ ( n ) ( log x ) λ log 2 if λ 1 C a r d n x ; τ ( n ) < ( log x ) λ log 2 if λ < 1 It has been shown that, if we set f ( λ , x ) = x ( log x ) λ log λ - λ + 1 log log x the quotient S λ ( x ) / f ( λ , x ) is bounded for λ fixed. The aim of this paper is to give an explicit value for the inferior and superior limits of this quotient when λ 2 . For instance, when λ = 1 / log 2 , we prove lim inf S λ ( x ) f ( λ , x ) = 0 . 938278681143 and lim inf S λ ( x ) f ( λ , x ) = 1 . 148126773469

Landau’s function for one million billions

Marc DelégliseJean-Louis NicolasPaul Zimmermann — 2008

Journal de Théorie des Nombres de Bordeaux

Let 𝔖 n denote the symmetric group with n letters, and g ( n ) the maximal order of an element of 𝔖 n . If the standard factorization of M into primes is M = q 1 α 1 q 2 α 2 ... q k α k , we define ( M ) to be q 1 α 1 + q 2 α 2 + ... + q k α k ; one century ago, E. Landau proved that g ( n ) = max ( M ) n M and that, when n goes to infinity, log g ( n ) n log ( n ) . There exists a basic algorithm to compute g ( n ) for 1 n N ; its running time is 𝒪 N 3 / 2 / log N and the needed memory is 𝒪 ( N ) ; it allows computing g ( n ) up to, say, one million. We describe an algorithm to calculate g ( n ) for n up to 10 15 . The main idea is to use the so-called ...

Page 1

Download Results (CSV)