The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Distances to convex sets

Antonio S. GraneroMarcos Sánchez — 2007

Studia Mathematica

If X is a Banach space and C a convex subset of X*, we investigate whether the distance d ̂ ( c o ¯ w * ( K ) , C ) : = s u p i n f | | k - c | | : c C : k c o ¯ w * ( K ) from c o ¯ w * ( K ) to C is M-controlled by the distance d̂(K,C) (that is, if d ̂ ( c o ¯ w * ( K ) , C ) M d ̂ ( K , C ) for some 1 ≤ M < ∞), when K is any weak*-compact subset of X*. We prove, for example, that: (i) C has 3-control if C contains no copy of the basis of ℓ₁(c); (ii) C has 1-control when C ⊂ Y ⊂ X* and Y is a subspace with weak*-angelic closed dual unit ball B(Y*); (iii) if C is a convex subset of X and X is considered canonically embedded into...

The extension of the Krein-Šmulian theorem for order-continuous Banach lattices

Antonio S. GraneroMarcos Sánchez — 2008

Banach Center Publications

If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf||x**-x||: x ∈ C be the distance from x** to C and d̂(A,C) = supd(a,C): a ∈ A. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) d ̂ ( c o ¯ w * ( K ) , X ) 2 d ̂ ( K , X ) and, if K ∩ X is w*-dense in K, then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) ; (ii) if X fails to have a copy of ℓ₁(ℵ₁), then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) ; (iii) if X has a 1-symmetric basis, then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) .

Page 1

Download Results (CSV)