The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients

Maria ManfrediniSergio Polidoro — 1998

Bollettino dell'Unione Matematica Italiana

Abbiamo considerato il problema della regolarità interna delle soluzioni deboli della seguente equazione differenziale i , j = 1 m 0 x i a i , j x , t x j u + i , j = 1 N b i , j x i x j u - t u = j = 1 m 0 x j F j x , t , dove x , t R N + 1 , 0 < m 0 N ed F j L loc p R N + 1 per j = 1 , , m 0 . I nostri principali risultati sono una stima a priori interna del tipo j = 1 m 0 x j u p c j = 1 m 0 F j p + u p , e la regolarità hölderiana di u . La stima a priori delle derivate viene ottenuta utilizzando una tecnica analoga a quella introdotta da Chiarenza, Frasca e Longo in [3], per gli operatori ellittici in forma di non divergenza, supponendo che i coefficienti a i , j verifichino una condizione...

Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups

Luca CapognaGiovanna CittiMaria Manfredini — 2013

Analysis and Geometry in Metric Spaces

In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a...

Page 1

Download Results (CSV)