Compact embedding theorems for generalized Sobolev spaces

Maria Manfredini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 4, page 251-263
  • ISSN: 1120-6330

Abstract

top
In this Note we give some compact embedding theorems for Sobolev spaces, related to m -tuples of vectors fields of C 1 class on R N .

How to cite

top

Manfredini, Maria. "Compact embedding theorems for generalized Sobolev spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.4 (1993): 251-263. <http://eudml.org/doc/244253>.

@article{Manfredini1993,
abstract = {In this Note we give some compact embedding theorems for Sobolev spaces, related to \( m \)-tuples of vectors fields of \( C^\{1\} \) class on \( \mathbb\{R\}^\{N\} \).},
author = {Manfredini, Maria},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Sobolev spaces; Compact embedding; Carathéodory distance; compact embedding theorems for Sobolev spaces},
language = {eng},
month = {12},
number = {4},
pages = {251-263},
publisher = {Accademia Nazionale dei Lincei},
title = {Compact embedding theorems for generalized Sobolev spaces},
url = {http://eudml.org/doc/244253},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Manfredini, Maria
TI - Compact embedding theorems for generalized Sobolev spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/12//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 4
SP - 251
EP - 263
AB - In this Note we give some compact embedding theorems for Sobolev spaces, related to \( m \)-tuples of vectors fields of \( C^{1} \) class on \( \mathbb{R}^{N} \).
LA - eng
KW - Sobolev spaces; Compact embedding; Carathéodory distance; compact embedding theorems for Sobolev spaces
UR - http://eudml.org/doc/244253
ER -

References

top
  1. AVANTAGGIATI, A., Spazi di Sobolev con peso e alcune applicazioni. Boll. U.M.I., (5), 13-A, 1976, 1-52. Zbl0355.46016MR423064
  2. BERGER, M.S. - SCHECHTER, M., Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains. Trans. Amer. Math. Soc., 172, 1972, 261-278. Zbl0253.35038MR312241
  3. COIFMAN, R.R. - WEISS, G., Analyse harmonique non-commutative sur certain espaces homogènes. Lecture Notes in Mathematics, 242, Springer-Verlag, Berlin-New York1971. Zbl0224.43006MR499948
  4. FEFFERMAN, C. - PHONG, D.H., Pseudo-differential operators with positive symbols. Seminair Goulaouic-Meyer-Schwartz, 23, 1981. Zbl0483.35085
  5. FOLLAND, G.B., Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv. for Math., 13, 1975, 161-207. Zbl0312.35026MR494315
  6. FOLLAND, G.B. - STEIN, C.R., Hardy spaces of homogeneous groups. Math. NotesPrinceton Univ. Press, 1982. Zbl0508.42025MR657581
  7. FRANCHI, B. - LANCONELLI, E., Une métrique associée à une classe d'opérateurs elliptiques dégénérés. Rend. Sem. Mat. Univ. Pol. Torino, 1983, Special Issue, 105-114. Zbl0553.35033MR745979
  8. FRANCHI, B. - LANCONELLI, E., An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnach inequality. Comm. in Partial Differential Equations, 9, 1984, 1237-1264. Zbl0589.46023MR764663DOI10.1080/03605308408820362
  9. FRANCHI, B. - SERAPIONI, R., Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm., vol. XIV, 1987, 527-568. Zbl0685.35046MR963489
  10. FULTON, W. - HARRIS, B., Representation theory: A first course. Graduate Text in Math., 129, Springer-Verlag, 1992. Zbl0744.22001MR1153249DOI10.1007/978-1-4612-0979-9
  11. GAROFALO, N. - LANCONELLI, E., Existence and nonexistence results for semilinear equations on the Heisenberg group. Ind. Univ. Math. Journ., 41, No. 1, 1992, 71-98. Zbl0793.35037MR1160903DOI10.1512/iumj.1992.41.41005
  12. HERMANN, R., Differential geometry and the calculus of variations. Academic Press, New York-London1968. Zbl0371.49001MR233313

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.