In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order in the energy norm.
In this paper, we study how solutions to elliptic problems with
periodically oscillating coefficients behave in
the neighborhood of the boundary of a domain. We extend the
results known for flat boundaries to domains with curved boundaries
in the case of a layered medium. This is done by generalizing the
notion of boundary layer and by defining boundary correctors which
lead to an approximation of order ε in the energy norm.
In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved...
Download Results (CSV)