The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

On the Plasma-Charge problem

Mario Pulvirenti

Séminaire Équations aux dérivées partielles

This short report is a review on recent results of S. Caprino, C. Marchioro, E. Miot and the author on the initial value problem associated to the evolution of a continuous distribution of charges (plasma) in presence of a finite number of point charges.

On the Singularities of the Newtonian two dimensional N-body Problem

Carlo MarchioroMario Pulvirenti — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera un sistema bidimensionale di N particelle interagenti tramite un potenziale di Newton o di Coulomb e si mostra che l’insieme delle condizioni iniziali che in un tempo finito possono condurre a delle singolarità possiede misura di Lebesgue nulla.

A kinetic equation for granular media

Dario BenedettoEmanuele CagliotiMario Pulvirenti — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

In this short note we correct a conceptual error in the heuristic derivation of a kinetic equation used for the description of a one-dimensional granular medium in the so called quasi-elastic limit, presented by the same authors in reference[1]. The equation we derived is however correct so that, the rigorous analysis on this equation, which constituted the main purpose of that paper, remains unchanged.

On the motion of a body in thermal equilibrium immersed in a perfect gas

Kazuo AokiGuido CavallaroCarlo MarchioroMario Pulvirenti — 2008

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity to the limiting velocity V and prove that, under suitable smallness assumptions, the approach...

Page 1

Download Results (CSV)