The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Combinatorics of open covers (III): games, Cp (X)

Marion Scheepers — 1997

Fundamenta Mathematicae

Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces C p ( X ) of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.

Lindelöf indestructibility, topological games and selection principles

Marion ScheepersFranklin D. Tall — 2010

Fundamenta Mathematicae

Arhangel’skii proved that if a first countable Hausdorff space is Lindelöf, then its cardinality is at most 2 . Such a clean upper bound for Lindelöf spaces in the larger class of spaces whose points are G δ has been more elusive. In this paper we continue the agenda started by the second author, [Topology Appl. 63 (1995)], of considering the cardinality problem for spaces satisfying stronger versions of the Lindelöf property. Infinite games and selection principles, especially the Rothberger property,...

Combinatorics of open covers (VII): Groupability

Ljubiša D. R. KočinacMarion Scheepers — 2003

Fundamenta Mathematicae

We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a T 31 / 2 -space. In [9] we showed that C p ( X ) has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. C p ( X ) has countable fan tightness and the Reznichenko property. 2....

Gδ -sets in topological spaces and games

Winfried JustMarion ScheepersJuris StepransPaul Szeptycki — 1997

Fundamenta Mathematicae

Players ONE and TWO play the following game: In the nth inning ONE chooses a set O n from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset T n of X. The players must obey the rule that O n O n + 1 T n + 1 T n for each n. TWO wins if the intersection of TWO’s sets is equal to the union of ONE’s sets. If ONE has no winning strategy, then each element of ℱ is a G δ -set. To what extent is the converse true? We show that:  (A) For ℱ the collection of countable subsets of X:   1. There are subsets...

Page 1

Download Results (CSV)