Set-valued semimartingales are introduced as an extension of the notion of single-valued semimartingales. For such multivalued processes their semimartingale selection properties are investigated.
We consider the problem of the existence of solutions of the random set-valued equation:
(I) , t ∈ [0,T] -a.e.; X₀ = U p.1
where F and U are given random set-valued mappings with values in the space , of all nonempty, compact and convex subsets of the separable Banach space E. Under certain restrictions on F we obtain existence of solutions of the problem (I). The connections between solutions of (I) and solutions of random differential inclusions are investigated.
In this paper, we consider weak solutions to stochastic inclusions driven by a semimartingale and a martingale problem formulated for such inclusions. Using this we analyze compactness of the set of solutions. The paper extends some earlier results known for stochastic differential inclusions driven by a diffusion process.
A martingale problem approach is used first to analyze compactness and continuous dependence of the solution set to stochastic differential inclusions of Ito type with convex integrands on the initial distributions. Next the problem of existence of optimal weak solutions to such inclusions and their dependence on the initial distributions is investigated.
The purpose of this work is a study of the following insurance reserve model: , t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: is considered.
In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy differential equations driven by Brownian motion. The continuous dependence on initial condition and stability properties are also established. As an example of application we use some stochastic fuzzy differential equation in a model of population dynamics.
Download Results (CSV)