The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Pseudoautomorphisms of Bruck loops and their generalizations

Mark GreerMichael Kinyon — 2012

Commentationes Mathematicae Universitatis Carolinae

We show that in a weak commutative inverse property loop, such as a Bruck loop, if α is a right [left] pseudoautomorphism with companion c , then c [ c 2 ] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing...

Moufang semidirect products of loops with groups and inverse property extensions

Mark GreerLee Raney — 2014

Commentationes Mathematicae Universitatis Carolinae

We investigate loops which can be written as the semidirect product of a loop and a group, and we provide a necessary and sufficient condition for such a loop to be Moufang. We also examine a class of loop extensions which arise as a result of a finite cyclic group acting as a group of semiautomorphisms on an inverse property loop. In particular, we consider closure properties of certain extensions similar to those as in [S. Gagola III, Cyclic extensions of Moufang loops induced by semiautomorphisms,...

Automorphic loops and metabelian groups

Mark GreerLee Raney — 2020

Commentationes Mathematicae Universitatis Carolinae

Given a uniquely 2-divisible group G , we study a commutative loop ( G , ) which arises as a result of a construction in “Engelsche elemente noetherscher gruppen” (1957) by R. Baer. We investigate some general properties and applications of “ ” and determine a necessary and sufficient condition on G in order for ( G , ) to be Moufang. In “A class of loops categorically isomorphic to Bruck loops of odd order” (2014) by M. Greer, it is conjectured that G is metabelian if and only if ( G , ) is an automorphic loop. We...

Page 1

Download Results (CSV)