The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Decomposing a 4th order linear differential equation as a symmetric product

Mark van Hoeij — 2002

Banach Center Publications

Let L(y) = 0 be a linear differential equation with rational functions as coefficients. To solve L(y) = 0 it is very helpful if the problem could be reduced to solving linear differential equations of lower order. One way is to compute a factorization of L, if L is reducible. Another way is to see if an operator L of order greater than 2 is a symmetric power of a second order operator. Maple contains implementations for both of these. The next step would be to see if L is a symmetric product of...

Solving conics over function fields

Mark van HoeijJohn Cremona — 2006

Journal de Théorie des Nombres de Bordeaux

Let F be a field whose characteristic is not  2 and K = F ( t ) . We give a simple algorithm to find, given a , b , c K * , a nontrivial solution in  K (if it exists) to the equation a X 2 + b Y 2 + c Z 2 = 0 . The algorithm requires, in certain cases, the solution of a similar equation with coefficients in F ; hence we obtain a recursive algorithm for solving diagonal conics over ( t 1 , , t n ) (using existing algorithms for such equations over  ) and over 𝔽 q ( t 1 , , t n ) .

Isomorphisms of algebraic number fields

Mark van HoeijVivek Pal — 2012

Journal de Théorie des Nombres de Bordeaux

Let ( α ) and ( β ) be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, ( β ) ( α ) . The algorithm is particularly efficient if there is only one isomorphism.

Page 1

Download Results (CSV)