The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Positivity of the density for the stochastic wave equation in two spatial dimensions

Mireille Chaleyat-MaurelMarta Sanz-Solé — 2003

ESAIM: Probability and Statistics

We consider the random vector u ( t , x ̲ ) = ( u ( t , x 1 ) , , u ( t , x d ) ) , where t > 0 , x 1 , , x d are distinct points of 2 and u denotes the stochastic process solution to a stochastic wave equation driven by a noise white in time and correlated in space. In a recent paper by Millet and Sanz–Solé [10], sufficient conditions are given ensuring existence and smoothness of density for u ( t , x ̲ ) . We study here the positivity of such density. Using techniques developped in [1] (see also [9]) based on Analysis on an abstract Wiener space, we characterize the set of...

Positivity of the density for the stochastic wave equation in two spatial dimensions

Mireille Chaleyat–MaurelMarta SanzSolé — 2010

ESAIM: Probability and Statistics

We consider the random vector u ( t , x ̲ ) = ( u ( t , x 1 ) , , u ( t , x d ) ) , where are distinct points of 2 and denotes the stochastic process solution to a stochastic wave equation driven by a noise white in time and correlated in space. In a recent paper by Millet and Sanz–Solé [10], sufficient conditions are given ensuring existence and smoothness of density for u ( t , x ̲ ) . We study here the positivity of such density. Using techniques developped in [1] (see also [9]) based on Analysis on an abstract Wiener space, we characterize the set of...

SPDEs with coloured noise: Analytic and stochastic approaches

Marco FerranteMarta Sanz-Solé — 2006

ESAIM: Probability and Statistics

We study strictly parabolic stochastic partial differential equations on d , ≥ 1, driven by a Gaussian noise white in time and coloured in space. Assuming that the coefficients of the differential operator are random, we give sufficient conditions on the correlation of the noise ensuring Hölder continuity for the trajectories of the solution of the equation. For self-adjoint operators with deterministic coefficients, the mild and weak formulation of the equation are related, deriving...

Page 1

Download Results (CSV)