The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Lagrangian fibrations on generalized Kummer varieties

Martin G. Gulbrandsen — 2007

Bulletin de la Société Mathématique de France

We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface A of Picard number one we find the following: The Kummer variety K n A is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if n is a perfect square. And this is the case if and only if K n A carries a divisor with vanishing Beauville-Bogomolov square.

Finite subschemes of abelian varieties and the Schottky problem

Martin G. GulbrandsenMartí Lahoz — 2011

Annales de l’institut Fourier

The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties ( A , Θ ) of dimension g , by the existence of g + 2 points Γ A in special position with respect to 2 Θ , but general with respect to Θ , and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly...

Page 1

Download Results (CSV)