The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In the present article we provide an example of two closed non--lower porous sets such that the product is lower porous. On the other hand, we prove the following: Let and be topologically complete metric spaces, let be a non--lower porous Suslin set and let be a non--porous Suslin set. Then the product is non--lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non--lower porous sets in topologically...
For any with we provide a simple construction of an -Hölde function and a -Hölder function such that the integral fails to exist even in the Kurzweil-Stieltjes sense.
We prove a separable reduction theorem for -porosity of Suslin sets. In particular, if is a Suslin subset in a Banach space , then each separable subspace of can be enlarged to a separable subspace such that is -porous in if and only if is -porous in . Such a result is proved for several types of -porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem...
Download Results (CSV)