Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Global calibrations for the non-homogeneous Mumford-Shah functional

Massimiliano Morini — 2002

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Using a calibration method we prove that, if Γ Ω is a closed regular hypersurface and if the function g is discontinuous along Γ and regular outside, then the function u β which solves Δ u β = β ( u β - g ) in Ω Γ ν u β = 0 on Ω Γ is in turn discontinuous along Γ and it is the unique absolute minimizer of the non-homogeneous Mumford-Shah functional Ω S u | u | 2 d x + n - 1 ( S u ) + β Ω S u ( u - g ) 2 d x , over S B V ( Ω ) , for β large enough. Applications of the result to the study of the gradient flow by the method of minimizing movements are shown.

Page 1

Download Results (CSV)