Functionals depending on curvatures with constraints

Maria Giovanna Mora; Massimiliano Morini

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 104, page 173-199
  • ISSN: 0041-8994

How to cite

top

Mora, Maria Giovanna, and Morini, Massimiliano. "Functionals depending on curvatures with constraints." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 173-199. <http://eudml.org/doc/108533>.

@article{Mora2000,
author = {Mora, Maria Giovanna, Morini, Massimiliano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {integral functional; curvature; Hausdorff measure; compactness; Hausdorff distance; semicontinuity; image segmentation},
language = {eng},
pages = {173-199},
publisher = {Seminario Matematico of the University of Padua},
title = {Functionals depending on curvatures with constraints},
url = {http://eudml.org/doc/108533},
volume = {104},
year = {2000},
}

TY - JOUR
AU - Mora, Maria Giovanna
AU - Morini, Massimiliano
TI - Functionals depending on curvatures with constraints
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 173
EP - 199
LA - eng
KW - integral functional; curvature; Hausdorff measure; compactness; Hausdorff distance; semicontinuity; image segmentation
UR - http://eudml.org/doc/108533
ER -

References

top
  1. [1] E. Acerbi - N. Fusco, Semicontinuity Problems in the Calculus of Variations, Arch. Rational Mech. Anal., 86 (1984), pp. 125-145. Zbl0565.49010MR751305
  2. [2] S. Agmon - A. DOUGLIS - L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions, Comm. Pure Appl. Math., 12 (1959), pp. 623-727. Zbl0093.10401MR125307
  3. [3] G. Bellettini - G. Dal Maso - M. Paolini, Semicontinuity and Relaxation Properties of a Curvature Depending Functional in 2D, Ann. Scuola Norm. Sup. Pisa, XX (1993), pp. 247-297. Zbl0797.49013MR1233638
  4. [4] M.P. D, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey (1976). Zbl0326.53001MR394451
  5. [5] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics-Volume 1, World Scientific Publishing Co Pte Ltd., Singapore (1984). Zbl0537.53049MR749575
  6. [6] G. Dal Maso: An Introduction to Γ-convergence, Birkhäuser, Boston (1993). Zbl0816.49001
  7. [7] J.M. Morel - S. Solimini, Variational Models in Image Segmentation, Birkhäuser, Boston (1995). MR1321598
  8. [8] M. Nitzberg - D. Mumford, The 2.1-D Sketch, International Conference on Computer Vision. Computer Society Press, IEEE (1990). 
  9. [9] M. Nitzberg - D. Mumford - T. Shiota, Filtering, Segmentation and Depth, Springer-Verlag, Berlin (1993). Zbl0801.68171MR1226232
  10. [10] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Berkeley (1979). Zbl0439.53001
  11. [11] T.J. Willmore, Note on embedded surfaces, An. Stiint. Univ. «Al. I. Cusa» Iasi Sect. I, a Mat., vol. II (1965), pp. 443-446. Zbl0171.20001MR202066
  12. [12] T.J. Willmore, Mean Curvature of Immersed Manifolds, topics in Differential Geometry, edited by H. Rund and W. F. Forbes, Academic Press, London (1976), pp. 149-156. Zbl0339.53005MR413017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.