Selmer groups and Heegner points in anticyclotomic -extensions
Let be an elliptic curve over , let be an imaginary quadratic field, and let be a -extension of . Given a set of primes of , containing the primes above , and the primes of bad reduction for , write for the maximal algebraic extension of which is unramified outside . This paper is devoted to the study of the structure of the cohomology groups for and of the -primary Selmer group Sel, viewed as discrete modules over the Iwasawa algebra of
This article is a revised version of the text of the plenary conference I gave at the XIX Congress of ``Unione Matematica Italiana'', held in Bologna in September 2011. It discusses the arithmetic significance of the values at integers of the complex and p-adic L-functions associated to Dirichlet characters and to elliptic curves.
Let be a modular elliptic curve, and let be an imaginary quadratic field. We show that the -Selmer group of over certain finite anticyclotomic extensions of , modulo the universal norms, is annihilated by the «characteristic ideal» of the universal norms modulo the Heegner points. We also extend this result to the anticyclotomic -extension of . This refines in the current contest a result of [1].
Page 1