The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 36

Showing per page

Order by Relevance | Title | Year of publication

Integrable solutions of functional equations

Janusz Matkowski — 1975

ContentsIntroduction............................................................................................................................................................................... 50. Explanatory notes, definitions and a lemma................................................................................................................. 51. Some fixed point theorems..................................................................................................................................................

On subadditive functions and ψ-additive mappings

Janusz Matkowski — 2003

Open Mathematics

In [4], assuming among others subadditivity and submultiplicavity of a function ψ: [0, ∞)→[0, ∞), the authors proved a Hyers-Ulam type stability theorem for “ψ-additive” mappings of a normed space into a normed space. In this note we show that the assumed conditions of the function ψ imply that ψ=0 and, consequently, every “ψ-additive” mapping must be additive

The converse of the Hölder inequality and its generalizations

Janusz Matkowski — 1994

Studia Mathematica

Let (Ω,Σ,μ) be a measure space with two sets A,B ∈ Σ such that 0 < μ (A) < 1 < μ (B) < ∞ and suppose that ϕ and ψ are arbitrary bijections of [0,∞) such that ϕ(0) = ψ(0) = 0. The main result says that if ʃ Ω x y d μ ϕ - 1 ( ʃ Ω ϕ x d μ ) ψ - 1 ( ʃ Ω ψ x d μ ) for all μ-integrable nonnegative step functions x,y then ϕ and ψ must be conjugate power functions. If the measure space (Ω,Σ,μ) has one of the following properties: (a) μ (A) ≤ 1 for every A ∈ Σ of finite measure; (b) μ (A) ≥ 1 for every A ∈ Σ of positive measure, then there exist...

Generalized weighted quasi-arithmetic means and the Kolmogorov-Nagumo theorem

Janusz Matkowski — 2013

Colloquium Mathematicae

A generalization of the weighted quasi-arithmetic mean generated by continuous and increasing (decreasing) functions f , . . . , f k : I , k ≥ 2, denoted by A [ f , . . . , f k ] , is considered. Some properties of A [ f , . . . , f k ] , including “associativity” assumed in the Kolmogorov-Nagumo theorem, are shown. Convex and affine functions involving this type of means are considered. Invariance of a quasi-arithmetic mean with respect to a special mean-type mapping built of generalized means is applied in solving a functional equation. For a sequence of...

Invariance identity in the class of generalized quasiarithmetic means

Janusz Matkowski — 2014

Colloquium Mathematicae

An invariance formula in the class of generalized p-variable quasiarithmetic means is provided. An effective form of the limit of the sequence of iterates of mean-type mappings of this type is given. An application to determining functions which are invariant with respect to generalized quasiarithmetic mean-type mappings is presented.

Fixed points and iterations of mean-type mappings

Janusz Matkowski — 2012

Open Mathematics

Let (X, d) be a metric space and T: X → X a continuous map. If the sequence (T n)n∈ℕ of iterates of T is pointwise convergent in X, then for any x ∈ X, the limit μ T ( x ) = lim n T n ( x ) is a fixed point of T. The problem of determining the form of µT leads to the invariance equation µT ○ T = µT, which is difficult to solve in general if the set of fixed points of T is not a singleton. We consider this problem assuming that X = I p, where I is a real interval, p ≥ 2 a fixed positive integer and T is the mean-type mapping...

Page 1 Next

Download Results (CSV)