Mathematical snapshots from the computational geometry landscape.
Let , be metric spaces and an injective mapping. We put , and (the of the mapping ). We investigate the minimum dimension such that every -point metric space can be embedded into the space with a prescribed distortion . We obtain that this is possible for , where is a suitable absolute constant. This improves a result of Johnson, Lindenstrauss and Schechtman [JLS87] (with a simpler proof). Related results for embeddability into are obtained by a similar method.
Let , be metric spaces and an injective mapping. We put ; , , and (the of the mapping ). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let be a finite metric space, and let , be given numbers. Then there exists a finite metric space , such that for every mapping ( arbitrary metric space) with one can find a mapping , such that both the mappings and have distortion at most ....
We give an example of a set of points in such that, for any partition of into triples, there exists a line stabbing of the triangles determined by the triples.
L. Kirby and J. Paris introduced the Hercules and Hydra game on rooted trees as a natural example of an undecidable statement in Peano Arithmetic. One can show that Hercules has a “short” strategy (he wins in a primitively recursive number of moves) and also a “long” strategy (the finiteness of the game cannot be proved in Peano Arithmetic). We investigate the conflict of the “short” and “long” intentions (a problem suggested by J. Nešetřil). After each move of Hercules (trying to kill Hydra fast)...
Let be the following algorithmic problem: Given a finite simplicial complex of dimension at most , does there exist a (piecewise linear) embedding of into ? Known results easily imply polynomiality of (; the case is graph planarity) and of for all . We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that and are undecidable for each . Our main result is NP-hardness of and, more generally, of for all , with...
Page 1