Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Convergence rates of symplectic Pontryagin approximations in optimal control theory

Mattias SandbergAnders Szepessy — 2006

ESAIM: Mathematical Modelling and Numerical Analysis

Many inverse problems for differential equations can be formulated as optimal control problems. It is well known that inverse problems often need to be regularized to obtain good approximations. This work presents a systematic method to regularize and to establish error estimates for approximations to some control problems in high dimension, based on symplectic approximation of the Hamiltonian system for the control problem. In particular the work derives error estimates and constructs regularizations...

Symplectic Pontryagin approximations for optimal design

Jesper CarlssonMattias SandbergAnders Szepessy — 2009

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be...

Symplectic Pontryagin approximations for optimal design

Jesper CarlssonMattias SandbergAnders Szepessy — 2008

ESAIM: Mathematical Modelling and Numerical Analysis

The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the Hamiltonian; next the solution to its stationary Hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the Hamiltonian function...

Page 1

Download Results (CSV)