Periodic solutions arising in ecology of mangroves
The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.
We consider a class of degenerate reaction-diffusion equations on a bounded domain with nonlinear flux on the boundary. These problems arise in the mathematical modelling of flow through porous media. We prove, under appropriate hypothesis, the existence and uniqueness of the nonnegative weak periodic solution. To establish our result, we use the Schauder fixed point theorem and some regularizing arguments.
We consider the following quasilinear parabolic equation of degenerate type with convection term u = φ (u) + b(u) in (-L,0) x (0,T). We solve the associate initial-boundary data problem, with nonlinear flux conditions. This problem describes the evaporation of an incompressible fluid from a homogeneous porous media. The nonlinear condition in x = 0 means that the flow of fluid leaving the porous media depends on variable meteorological conditions and in a nonlinear manner on u. In x = -L we have...
Page 1