Semi-groupes d'opérateurs sur un convexe compact et calcul de perturbations
Dans ce travail, nous définissons et étudions la notion de “différentiabilité stochastique” d’une fonction définie sur un ouvert fin d’une variété riemannienne de dimension finie. Nous démontrons ensuite qu’une fonction admettant une “suite d’approximation forte” est, quasi-partout, stochastiquement indéfiniment différentiable et nous appliquons ces résultats à une classe de fonctions finement harmoniques.
Page 1