A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent to a vertex in the set, while a paired-dominating set of a graph is a dominating set such that the subgraph induced by the dominating set contains a perfect matching. In this paper, we show that no minimum degree is sufficient to guarantee the existence of a disjoint dominating set and a paired-dominating set. However, we prove that the vertex set of every cubic graph can be partitioned into a dominating...
A graph G is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. In this paper we characterize the diameter-2-critical graphs with no antihole of length four, that is, the diameter-2-critical graphs whose complements have no induced 4-cycle. Murty and Simon conjectured that the number of edges in a diameter-2-critical graph of order n is at most n 2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. As a consequence...
In this paper, we continue the study of domination and total domination in cubic graphs. It is known [Henning M.A., Southey J., A note on graphs with disjoint dominating and total dominating sets, Ars Combin., 2008, 89, 159–162] that every cubic graph has a dominating set and a total dominating set which are disjoint. In this paper we show that every connected cubic graph on nvertices has a total dominating set whose complement contains a dominating set such that the cardinality of the total dominating...
Let H be a hypergraph on n vertices and m edges with all edges of size at least four. The transversal number τ(H) of H is the minimum number of vertices that intersect every edge. Lai and Chang [An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133] proved that τ(H) ≤ 2(n+m)/9, while Chvátal and McDiarmid [Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26] proved that τ(H) ≤ (n + 2m)/6. In this paper, we characterize...
In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number . If G ≠ C₅ is a connected graph of order n with minimum degree at least 2, then we show that and we characterize those graphs achieving equality.
A Roman dominating function (RDF) on a graph G = (V,E) is a function f: V → 0,1,2 satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of f is . The Roman domination number is the minimum weight of an RDF in G. It is known that for every graph G, the Roman domination number of G is bounded above by twice its domination number. Graphs which have Roman domination number equal to twice their domination number are called...
A graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Let G be a diameter-2-critical graph of order n. Murty and Simon conjectured that the number of edges in G is at most ⌊n 2/4⌋ and that the extremal graphs are the complete bipartite graphs K ⌊n/2⌋,⌊n/2⌉. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for n ≤ 24 and for n = 26, while Füredi [J. Graph Theory 16 (1992), 81–98] proved the conjecture for n > n 0 where n 0 is a...
A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G such that D is a dominating set and D2 is a 2-dominating set of G. Although there are infinitely many graphs that do not contain a DD2-pair, we show that every graph with minimum degree at least two has a DD2-pair. We provide a constructive characterization of trees that have a DD2-pair and show that K3,3 is the only connected graph with minimum degree at least three for which D ∪ D2 necessarily contains all vertices of the...
A set S of vertices of a graph G is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. We provide three equivalent conditions for a tree to have a unique minimum total dominating set and give a constructive characterization of such trees.
In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number . A function f(p) is defined, and it is shown that , where the minimum is taken over the n-dimensional cube . Using this result, it is then shown that if G has order n with minimum degree δ and average degree d, then .
Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, γ(G), and the total domination number, γt(G). A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, γt2(G), is the minimum cardinality of a semitotal dominating set of...
Let G be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, γt(G). A set S of vertices in G is a disjunctive total dominating set of G if every vertex is adjacent to a vertex of S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number, [...] γtd(G) , is the minimum cardinality of such a set. We observe that [...] γtd(G)≤γt(G)...
In this paper we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks (1998), 199–206). A paired-dominating set of a graph with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of , denoted by , is the minimum cardinality of a paired-dominating set of . The graph is paired-domination vertex critical if for every vertex of that is not adjacent to a vertex of degree one,...
Let H = (V, E) be a hypergraph with vertex set V and edge set E. A dominating set in H is a subset of vertices D ⊆ V such that for every vertex v ∈ V D there exists an edge e ∈ E for which v ∈ e and e ∩ D ≠ ∅. The domination number γ(H) is the minimum cardinality of a dominating set in H. It is known [Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62-71] that for k ≥ 5, if H is a hypergraph of order n and size m with all...
In the domination game on a graph G, the players Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices dominated. This process eventually produces a dominating set of G; Dominator aims to minimize the size of this set, while Staller aims to maximize it. The size of the dominating set produced under optimal play is the game domination number of G, denoted by γg(G). Kinnersley, West and Zamani [SIAM J. Discrete Math. 27 (2013) 2090-2107]...
A recent result of Henning and Southey (A note on graphs with disjoint dominating and total dominating set, Ars Comb. 89 (2008), 159-162) implies that every connected graph of minimum degree at least three has a dominating set D and a total dominating set T which are disjoint. We show that the Petersen graph is the only such graph for which D∪T necessarily contains all vertices of the graph.
A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. First we establish bounds on the total domination subdivision number for some families...
Let G = (V,E) be a graph and let k ∈ Z⁺. A total k-subdominating function is a function f: V → {-1,1} such that for at least k vertices v of G, the sum of the function values of f in the open neighborhood of v is positive. The total k-subdomination number of G is the minimum value of f(V) over all total k-subdominating functions f of G where f(V) denotes the sum of the function values assigned to the vertices under f. In this paper, we present a cubic time algorithm to compute the total k-subdomination...
Download Results (CSV)