Continuity of the spectrum of norm-normal matrices
Let be weak contractions (in the sense of Sz.-Nagy and Foiaş), the minimal functions of their parts and let be the greatest common inner divisor of . It is proved that the space of all operators intertwining is reflexive if and only if the model operator is reflexive. Here means the compression of the unilateral shift onto the space . In particular, in finite-dimensional spaces the space is reflexive if and only if all roots of the greatest common divisor of minimal polynomials...
In this paper a complete characterization of hyperreflexive operators on finite dimensional Hilbert spaces is given.
The main objective of the project was to obtain advanced mathematical methods to guarantee the verification that a required level of data integrity is maintained in long-term storage. The secondary objective was to provide methods for the evaluation of data loss and recovery. Additionally, we have provided the following initial constraints for the problem: a limitation of additional storage space, a minimal threshold for desired level of data integrity and a defined probability of a single-bit corruption....
We study operators whose commutant is reflexive but not hyperreflexive. We construct a C₀ contraction and a Jordan block operator associated with a Blaschke product B which have the above mentioned property. A sufficient condition for hyperreflexivity of is given. Some other results related to hyperreflexivity of spaces of operators that could be interesting in themselves are proved.
Page 1