Structure at infinity, model matching and disturbance rejection for linear systems with delays
The disturbance decoupling problem is studied for linear delay systems. The structural approach is used to design a decoupling precompensator. The realization of the given precompensator by static state feedback is studied. Using various structural and geometric tools, a detailed description of the feedback is given, in particular, derivative of the delayed disturbance can be needed in the realization of the precompensator.
We consider the row-by-row decoupling problem for linear delay systems and show some close connections between the design of a decoupling controller and some particular structures of delay systems, namely the so-called weak structure at infinity. The realization by static state feedback of decoupling precompensators is studied, in particular, generalized state feedback laws which may incorporate derivatives of the delayed new reference.
In this paper, we revisit the structural concept of properness. We distinguish between the properness of the whole system, here called internal properness, and the properness of the “observable part” of the system. We give geometric characterizations for this last properness concept, namely external properness.
This paper is concerned with the flexibility in the closed loop pole location when solving the optimal control problem (also called the optimal disturbance attenuation problem) by proper measurement feedback. It is shown that there exists a precise and unique set of poles which is present in the closed loop system obtained by any measurement feedback solution of the optimal control problem. These “ optimal fixed poles” are characterized in geometric as well as structural terms. A procedure...
Page 1