Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Singularités à l’infini et intégration motivique

Michel Raibaut — 2012

Bulletin de la Société Mathématique de France

Soit k un corps de caractéristique nulle et f une fonction non constante définie sur une variété lisse. Nous définissons dans cet article unequi appartient à un anneau de Grothendieck des variétés. Elle est définie en termes d’une compactification choisie, non nécessairement lisse, mais est indépendante de ce choix. Lorsque k est le corps des nombres complexes, en utilisant le morphisme de réalisation de Hodge, elle se réalise en le spectre à l’infini de f . Nous la calculons par exemple, dans le...

Fibre de Milnor motivique à l’infini et composition avec un polynôme non dégénéré

Michel Raibaut — 2012

Annales de l’institut Fourier

Soit k un corps de caractéristique nulle, P un polynôme de Laurent en d variables, à coefficients dans k et non dégénéré pour son polyèdre de Newton à l’infini. Soit d fonctions non constantes f l à variables séparées et définies sur des variétés lisses. A la manière de Guibert, Loeser et Merle, dans le cas local, nous calculons dans cet article, la de la composée P ( f ) en termes du polyèdre de Newton à l’infini de P . Pour P égal à la somme x 1 + x 2 nous obtenons une formule du type Thom-Sébastiani. Ceci permet...

Page 1

Download Results (CSV)