In this paper we prove a theorem for the existence of pseudo-solutions to the Cauchy problem, x' = f(t,x), x(0) = x₀ in Banach spaces. The function f will be assumed Pettis-integrable, but this assumption is not sufficient for the existence of solutions. We impose a weak compactness type condition expressed in terms of measures of weak noncompactness. We show that under some additionally assumptions our solutions are, in fact, weak solutions or even strong solutions. Thus, our theorem is an essential...
In this paper we deal with the Cauchy problem for differential inclusions governed by -accretive operators in general Banach spaces. We are interested in finding the sufficient conditions for the existence of integral solutions of the problem , , where is an -accretive operator, and is a continuous, but non-compact perturbation, satisfying some additional conditions.
The existence of bounded solutions for equations in Banach spaces is proved. We assume that the linear part is trichotomic and the perturbation satisfies some conditions expressed in terms of measures of noncompactness.
In this paper we prove an existence theorem for the Hammerstein integral equation
, where the integral is taken in the sense of Pettis. In this theorem continuity assumptions for f are replaced by weak sequential continuity and the compactness condition is expressed in terms of the measures of weak noncompactness. Our equation is considered in general Banach spaces.
We investigate the structure of the set of solutions of the Cauchy problem x’ = f(t,x), x(0) = x₀ in Banach spaces. If f satisfies a compactness condition expressed in terms of measures of weak noncompactness, and f is Pettis-integrable, then the set of pseudo-solutions of this problem is a continuum in , the space of all continuous functions from I to E endowed with the weak topology. Under some additional assumptions these solutions are, in fact, weak solutions or strong Carathéodory solutions,...
In this paper we study the Darboux problem in some class of Banach spaces. The right-hand side of this problem is a Pettis-integrable function satisfying some conditions expressed in terms of measures of weak noncompactness. We prove that the set of all local pseudo-solutions of our problem is nonempty, compact and connected in the space of continuous functions equipped with the weak topology.
Using the Darbo fixed point theorem associated with the measure of noncompactness, we establish the existence of monotonic integrable solution on a half-line ℝ₊ for a nonlinear quadratic functional integral equation.
In this paper we consider the nonlocal (nonstandard) Cauchy problem for differential inclusions in Banach spaces
x'(t) ∈ F(t,x(t)), x(0)=g(x), t ∈ [0,T] = I.
Investigation over some multivalued integrals allow us to prove the existence of solutions for considered problem. We concentrate on the problems for which the assumptions are expressed in terms of the weak topology in a Banach space. We recall and improve earlier papers of this type. The paper is complemented...
In this paper we prove an existence theorem for the Cauchy problem
using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function satisfies some conditions expressed in terms of measures of weak noncompactness.
Download Results (CSV)