The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

High degree precision decomposition method for the evolution problem with an operator under a split form

Zurab GegechkoriJemal RogavaMikheil Tsiklauri — 2002

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit a priori estimation is obtained.

The fourth order accuracy decomposition scheme for an evolution problem

Zurab GegechkoriJemal RogavaMikheil Tsiklauri — 2004

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.

High degree precision decomposition method for the evolution problem with an operator under a split form

Zurab GegechkoriJemal RogavaMikheil Tsiklauri — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit estimation is obtained.

The fourth order accuracy decomposition scheme for an evolution problem

Zurab GegechkoriJemal RogavaMikheil Tsiklauri — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit estimate is obtained.

Page 1

Download Results (CSV)