High degree precision decomposition method for the evolution problem with an operator under a split form
Zurab Gegechkori; Jemal Rogava; Mikheil Tsiklauri
- Volume: 36, Issue: 4, page 693-704
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGegechkori, Zurab, Rogava, Jemal, and Tsiklauri, Mikheil. "High degree precision decomposition method for the evolution problem with an operator under a split form." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.4 (2002): 693-704. <http://eudml.org/doc/246045>.
@article{Gegechkori2002,
abstract = {In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit a priori estimation is obtained.},
author = {Gegechkori, Zurab, Rogava, Jemal, Tsiklauri, Mikheil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {decomposition method; semigroup; Trotter formula; Cauchy abstract problem; Semigroup; abstract Cauchy problem; parallel computation; error estimate},
language = {eng},
number = {4},
pages = {693-704},
publisher = {EDP-Sciences},
title = {High degree precision decomposition method for the evolution problem with an operator under a split form},
url = {http://eudml.org/doc/246045},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Gegechkori, Zurab
AU - Rogava, Jemal
AU - Tsiklauri, Mikheil
TI - High degree precision decomposition method for the evolution problem with an operator under a split form
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 4
SP - 693
EP - 704
AB - In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit a priori estimation is obtained.
LA - eng
KW - decomposition method; semigroup; Trotter formula; Cauchy abstract problem; Semigroup; abstract Cauchy problem; parallel computation; error estimate
UR - http://eudml.org/doc/246045
ER -
References
top- [1] P.R. Chernoff, Note on product formulas for operators semigroups. J. Funct. Anal. 2 (1968) 238–242. Zbl0157.21501
- [2] P.R. Chernoff, Semigroup product formulas and addition of unbounded operators. Bull. Amer. Mat. Soc. 76 (1970) 395–398. Zbl0193.42403
- [3] B.O. Dia and M. Schatzman, Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér. 30 (1996) 343–383. Zbl0853.47024
- [4] E.G. Diakonov, Difference schemas with decomposition operator for Multidimensional problems. JNM and MPh 2 (1962) 311–319.
- [5] I.V. Fryazinov, Increased precision order economical schemas for the solution of parabolic type multidimensional equations. JNM and MPh 9 (1969) 1319–1326.
- [6] Z.G. Gegechkori, J.A. Rogava and M.A Tsiklauri, Sequential-Parallel method of high degree precision for Cauchy abstract problem solution. Tbilisi, in Reports of the Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics 14 (1999). Zbl1229.65092MR1957118
- [7] D.G. Gordeziani, On application of local one dimensional method for solving parabolic type multidimensional problems of 2m-degree. Proc. Acad. Sci. GSSR 3 (1965) 535–542.
- [8] D.G. Gordeziani and H.V. Meladze, On modeling multidimensional quasi-linear equation of parabolic type by one-dimensional ones. Proc. Acad. Sci. GSSR 60 (1970) 537–540. Zbl0222.35042
- [9] D.G. Gordeziani and H.V. Meladze, On modeling of third boundary value problem for the multidimensional parabolic equations of an arbitrary area by one-dimensional equations. JNM and MPh 14 (1974) 246–250. Zbl0278.35049
- [10] D.G. Gordeziani and A.A. Samarskii, Some problems of plates and shells thermo elasticity and method of summary approximation. Complex Anal. Appl. (1978) 173–186. Zbl0432.73007
- [11] N.N. Ianenko, Fractional steps method of solving multidimensional problems of mathematical physics. Nauka, Novosibirsk (1967) 196 p.
- [12] T. Ichinose and S. Takanobu, The norm estimate of the difference between the Kac operator and the Schrodinger semigroup. Nagoya Math. J. 149 (1998) 53–81. Zbl0917.47041
- [13] K. Iosida, Functional analysis. Springer-Verlag (1965).
- [14] T. Kato, The theory of perturbations of linear operators. Mir, Moscow (1972) 740 p. Zbl0247.47009
- [15] S.G. Krein, Linear equations in Banach space. Nauka, Moscow (1971), 464 p. Zbl0535.47008
- [16] A.M. Kuzyk and V.L. Makarov, Estimation of exactitude of summarized approximation of a solution of the Cauchy abstract problem. RAN USSR 275 (1984) 297–301. Zbl0601.65047
- [17] G.I. Marchuk, Split methods. Nauka, Moscow (1988) 264 p. Zbl0653.65065MR986974
- [18] J.A. Rogava, On the error estimation of Trotter type formulas in the case of self-Adjoint operator. Funct. Anal. Appl. 27 (1993) 84–86. Zbl0814.47050
- [19] J.A. Rogava, Semi-discrete schemas for operator differential equations. Tbilisi, Georgian Technical University press (1995) 288 p.
- [20] A.A. Samarskii, Difference schemas theory. Nauka, Moscow (1977), 656 p. Zbl0462.65055MR483271
- [21] A.A. Samarskii and P.N. Vabishchevich, Additive schemas for mathematical physics problems. Nauka, Moscow (1999). Zbl0963.65091MR1788271
- [22] R. Temam, Quelques méthodes de décomposition en analyse numérique. Actes Congrés Intern. Math. (1970) 311–319. Zbl0262.65056
- [23] H. Trotter, On the product of semigroup of operators. Proc. Amer. Mat. Soc. 10 (1959) 545–551. Zbl0099.10401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.