Natural transformations of foliations into foliations on the cotangent bundle
Let be a -dimensional foliation on an -manifold , and the -tangent bundle of . The purpose of this paper is to present some reltionship between the foliation and a natural lifting of to the bundle . Let be a foliation on projectable onto and a natural lifting of foliations to . The author proves the following theorem: Any natural lifting of foliations to the -tangent bundle is equal to one of the liftings . The exposition is clear and well organized.
[For the entire collection see Zbl 0699.00032.] Natural transformations of the Weil functor of A-velocities [, Commentat. Math. Univ. Carol. 27, 723-729 (1986; Zbl 0603.58001)] into an arbitrary bundle functor F are characterized. In the case where F is a linear bundle functor, the author deduces that the dimension of the vector space of all natural transformations of into F is finite and is less than or equal to . The spaces of all natural transformations of Weil functors into linear functors...
One studies the flow prolongation of projectable vector fields with respect to a bundle functor of order on the category of fibered manifolds. As a result, one constructs an operator transforming connections on a fibered manifold into connections on an arbitrary vertical bundle over . It is deduced that this operator is the only natural one of finite order and one presents a condition on vertical bundles over under which every natural operator in question has finite order.
This paper is a contribution to the axiomatic approach to geometric objects. A collection of a manifold M, a topological space N, a group homomorphism E: Diff(M) → Homeo(N) and a function π: N → M is called a quasi-natural bundle if (1) π ∘ E(f) = f ∘ π for every f ∈ Diff(M) and (2) if f,g ∈ Diff(M) are two diffeomorphisms such that f|U = g|U for some open subset U of M, then E(f)|π^{-1}(U) = E(g)|π^{-1}(U). We give conditions which ensure that π: N → M is continuous. In particular, if (M,N,E,π)...
A complete description is given of all product preserving gauge bundle functors F on vector bundles in terms of pairs (A,V) consisting of a Weil algebra A and an A-module V with . Some applications of this result are presented.
Let be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on is given.
We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor on the vector r-tangent bundle over M. This problem is reflected in the concept of natural operators . For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over and we construct explicitly a basis of this module.
Let A be a Weil algebra and V be an A-module with dim V < ∞. Let E → M be a vector bundle and let TE → TM be the vector bundle corresponding to (A,V). We construct canonically a linear semibasic tangent valued p-form Tφ : T E → ΛT*TM ⊗ TTE on TE → TM from a linear semibasic tangent valued p-form φ : E → ΛT*M ⊗ TE on E → M. For the Frolicher-Nijenhuis bracket we prove that [[Tφ, Tψ]] = T ([[φ,ψ]]) for any linear semibasic tangent valued p- and q-forms φ and ψ on E → M. We apply these results...
Using a general connection Γ on a fibred manifold p:Y → M and a torsion free classical linear connection ∇ on M, we distinguish some “special” fibred coordinate systems on Y, and then we construct a general connection on Fp:FY → FM for any vector bundle functor F: ℳ f → of finite order.
Let 𝓟𝓑 be the category of principal bundles and principal bundle homomorphisms. We describe completely the product preserving gauge bundle functors (ppgb-functors) on 𝓟𝓑 and their natural transformations in terms of the so-called admissible triples and their morphisms. Then we deduce that any ppgb-functor on 𝓟𝓑 admits a prolongation of principal connections to general ones. We also prove a "reduction" theorem for prolongations of principal connections into principal ones by means of Weil functors....
A classification of all -natural operators lifting p-dimensional distributions D ⊂ TM on m-manifolds M to q-dimensional distributions A(D) ⊂ TT*M on the cotangent bundle T*M is given.
We present a complete description of all product preserving bundle functors on the category ℱol of all foliated manifolds and their leaf respecting maps in terms of homomorphisms of Weil algebras.
We present a complete description of all fiber product preserving gauge bundle functors F on the category of vector bundles with m-dimensional bases and vector bundle maps with local diffeomorphisms as base maps. Some corollaries of this result are presented.
All natural operators A transforming a linear vector field X on a vector bundle E into a vector field A(X) on the r-jet prolongation of E are given. Similar results are deduced for the r-jet prolongations and in place of .
Let Y → M be a fibred manifold with m-dimensional base and n-dimensional fibres. Let r, m,n be positive integers. We present a construction of rth order holonomic connections on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M. Then we prove that any construction B of rth order holonomic connections on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M is equal to . Applying...
Let be a fibred manifold with -dimensional base and -dimensional fibres and be a vector bundle with the same base and with -dimensional fibres (the same ). If and , we classify all canonical constructions of a classical linear connection on from a system consisting of a general connection on , a torsion free classical linear connection on , a vertical parallelism on and a linear connection on . An example of such is the connection by I. Kolář.
The complete description of all product preserving bundle functors on fibered manifolds in terms of natural transformations between product preserving bundle functors on manifolds is given.
Page 1 Next